skip to main content


Search for: All records

Creators/Authors contains: "Phillips, Richard P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2025
  2. Abstract Decades of theory and empirical studies have demonstrated links between biodiversity and ecosystem functioning, yet the putative processes that underlie these patterns remain elusive. This is especially true for forest ecosystems, where the functional traits of plant species are challenging to quantify. We analyzed 74,563 forest inventory plots that span 35 ecoregions in the contiguous USA and found that in ~77% of the ecoregions mixed mycorrhizal plots were more productive than plots where either arbuscular or ectomycorrhizal fungal-associated tree species were dominant. Moreover, the positive effects of mixing mycorrhizal strategies on forest productivity were more pronounced at low than high tree species richness. We conclude that at low richness different mycorrhizal strategies may allow tree species to partition nutrient uptake and thus can increase community productivity, whereas at high richness other dimensions of functional diversity can enhance resource partitioning and community productivity. Our findings highlight the importance of mixed mycorrhizal strategies, in addition to that of taxonomic diversity in general, for maintaining ecosystem functioning in forests. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract

    Forest stands dominated by ectomycorrhizal (ECM) associated trees often have more closed nitrogen (N) cycling than stands dominated by arbuscular mycorrhizal (AM) associated trees, with slower N mineralization in ECM stands thought to suppress inorganic N cycling. However, most estimates of N mineralization come from measurements of net processes, which can lead to an incomplete view of ecosystem N retention and loss. To explore the mechanisms driving mycorrhizal N cycling syndromes, we measured gross N production and assimilation rates and net and potential N flux rates in paired N addition (from NH4SO4and NaNO3) and control plots within ECM and AM-dominated stands. We observed greater gross N mineralization and microbial ammonium assimilation in ECM compared to AM stands, suggesting that increased microbial N demand drove lower net N mineralization rates in ECM stands. We found lower nitrification rates in ECM compared to AM stands and no effect of N addition on nitrification in ECM stands. Therefore, the low soil pH or high C:N ratios found in those stands, not limited ammonium supply, may have suppressed nitrification. Finally, potential denitrification rates and nitrous oxide fluxes were lower in ECM compared to AM stands with no effect of N addition, suggesting that denitrification is controlled by the endogenous supply of nitrate from nitrification, not exogenous nitrate inputs. Overall, we conclude that N mineralization may not play a central role in forming mycorrhizal nutrient syndromes, and that acidic conditions in ECM stands may ultimately control nitrification and the potential for ecosystem N loss.

     
    more » « less
  4. Abstract Understanding the effects of tree species and their mycorrhizal association on soil processes is critical for predicting the ecosystem consequences of species shifts owing to global change and forest management decisions. While it is well established that forests dominated by different mycorrhizal types can vary in how they cycle carbon (C), nitrogen (N) and phosphorus (P), the degree to which these patterns are driven by microbial‐mediated enzyme activity (EA) and ecoenzymatic stoichiometry (ES) remains elusive. Here, we synthesized the effects of mycorrhizal association on seven soil enzymes involved in microbial C, N and P acquisition and ES using data from 56 peer‐reviewed papers. We found that relative to soil in ectomycorrhizal (EcM) trees, soil in arbuscular mycorrhizal (AM) trees exhibited greater activity of some C acquisition enzymes (e.g. beta‐glucosidase; BG) and higher ecoenzymatic ratios of BG/NAG (N‐acetyl‐glucosaminidase) and BG/AP (acid phosphatase). These results supported that AM trees had rapid C and nutrient turnover rates, inorganic nutrient economics and high soil microbial C limitation. We also found evidence for an organic nutrient economy and greater soil microbial demand for nutrients in EcM trees compared to AM trees. In addition, the effect of mycorrhizal association on the activity of certain soil enzymes and enzymatic stoichiometry (i.e. BG and BG/NAG ratio) appeared to be associated with the differences in soil pH, phylogenetic group (i.e. conifers and broadleaves) and leaf habit (i.e. evergreen and deciduous) between AM and EcM trees. The results from the global meta‐analysis suggested that soil EA and ES appear to play critical roles in shaping the differences in the nutrient economy between AM and EcM tree species, but leaf morphology and soil conditions should be considered in evaluations of soil processes in forests of different mycorrhizal associations. Given that most of the studies in the database were from the temperate and subtropical regions, further research in other biomes is needed to elucidate the underlying mechanisms driving the mycorrhizal effect at the global scale. Read the free Plain Language Summary for this article on the Journal blog. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  5. Abstract

    Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9have suffered from methodological limitations related to the use of static data10–12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.

     
    more » « less
    Free, publicly-accessible full text available March 21, 2025
  6. Abstract

    Identifying the primary controls of particulate (POM) and mineral‐associated organic matter (MAOM) content in soils is critical for determining future stocks of soil carbon (C) and nitrogen (N) across the globe. However, drivers of these soil organic matter fractions are likely to vary among ecosystems in response to climate, soil type and the composition of local biological communities.

    We tested how soil factors, climate and plant–fungal associations influenced the distribution and concentrations of C and N in MAOM and POM in seven temperate forests in the National Ecological Observatory Network (NEON) across the eastern United States. Samples of upper mineral horizon soil within each forest were collected in plots representing a gradient of dominant tree–mycorrhizal association, allowing us to test how plant and microbial communities influenced POM and MAOM across sites differing in climate and soil conditions.

    We found that concentrations of C and N in soil organic matter were primarily driven by soil mineralogy, but the relative abundance of MAOM versus POM C was strongly linked to plot‐level mycorrhizal dominance. Furthermore, the effect of dominant tree mycorrhizal type on the distribution of N among POM and MAOM fractions was sensitive to local climate: in cooler sites, an increasing proportion of ectomycorrhizal‐associated trees was associated with lower proportions of N in MAOM, but in warmer sites, we found the reverse. As an indicator of soil carbon age, we measured radiocarbon in the MAOM fraction but found that within and across sites, Δ14C was unrelated to mycorrhizal dominance, climate, or soil factors, suggesting that additional site‐specific factors may be primary determinants of long‐term SOM persistence.

    Synthesis. Our results indicate that while soil mineralogy primarily controls SOM C and N concentrations, the distribution of SOM among density fractions depends on the composition of vegetation and microbial communities, with these effects varying across sites with distinct climates. We also suggest that within biomes, the age of mineral‐associated soil carbon is not clearly linked to the factors that control concentrations of MAOM C and N.

     
    more » « less
  7. Druzhinina, Irina S. (Ed.)
    ABSTRACT Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability. To test this overarching hypothesis, we explored the influence of predominant forest mycorrhizal type and mineral N availability on soil fungal communities using next-generation amplicon sequencing. Soils from four temperate hardwood forests in southern Indiana, United States, were studied; three forests formed a natural gradient of mycorrhizal dominance (100% AM tree basal area to 100% ECM basal area), while the fourth forest contained a factorial experiment testing long-term N addition in both dominant mycorrhizal types. We found that overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community mycorrhizal associations explained more variation in fungal community composition than abiotic variables, including soil depth, SOM content, nitrification rate, and mineral N availability. Our findings suggest that tree mycorrhizal associations may be good predictors of the diversity, composition, and functional potential of soil fungal communities in temperate hardwood forests. These observations help explain differing biogeochemistry and community dynamics found in forest stands dominated by differing mycorrhizal types. IMPORTANCE Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e., arbuscular [AM] versus ectomycorrhizal [ECM] associations) affect soil fungal communities by altering the diversity and relative abundance of saprotrophic and plant-pathogenic fungi along natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted to become more AM dominant with climate change, studies examining soil communities along mycorrhizal gradients are necessary to understand how these global changes may alter future soil fungal communities and their functional potential. Ours, along with other recent studies, identify possible global trends in the frequency of specific fungal functional groups responsible for nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations. 
    more » « less